Constructs the quaternions from complex numbers, octonions from quaternions, and keeps doubling like this indefinitely.
Quaternion by Ciro Santilli 37 Updated 2025-07-16
Kind of extends the complex numbers.
Some facts that make them stand out:
Propositional logic by Ciro Santilli 37 Updated 2025-07-16
This is the part of the formalization of mathematics that deals only with the propositions.
In some systems, e.g. including Metamath, modus ponens alone tends to be enough, everything else can be defined based on it.
Existence and uniqueness results are fundamental in mathematics because we often define objects by their properties, and then start calling them "the object", which is fantastically convenient.
But calling something "the object" only makes sense if there exists exactly one, and only one, object that satisfies the properties.
One particular context where these come up very explicitly is in solutions to differential equations, e.g. existence and uniqueness of solutions of partial differential equations.
Algebra by Ciro Santilli 37 Updated 2025-07-16
Not to be confused with algebra over a field, which is a particular algebraic structure studied within algebra.
Algebraic structure by Ciro Santilli 37 Updated 2025-07-16
A set plus any number of functions , such that each satisfies some properties of choice.
Key examples:
  • group: one function
  • field: two functions
  • ring: also two functions, but with less restrictive properties
Order (algebra) by Ciro Santilli 37 Updated 2025-07-16
The order of a algebraic structure is just its cardinality.
Sometimes, especially in the case of structures with an infinite number of elements, it is often more convenient to talk in terms of some parameter that characterizes the structure, and that parameter is usually called the degree.
Degree (algebra) by Ciro Santilli 37 Updated 2025-07-16
The degree of some algebraic structure is some parameter that describes the structure. There is no universal definition valid for all structures, it is a per structure type thing.
This is particularly useful when talking about structures with an infinite number of elements, but it is sometimes also used for finite structures.
Examples:
Linear function by Ciro Santilli 37 Updated 2025-07-16
The term is not very clear, as it could either mean:
Linear map by Ciro Santilli 37 Updated 2025-07-16
A linear map is a function where and are two vector spaces over underlying fields such that:
A common case is , and .
One thing that makes such functions particularly simple is that they can be fully specified by specifyin how they act on all possible combinations of input basis vectors: they are therefore specified by only a finite number of elements of .
Every linear map in finite dimension can be represented by a matrix, the points of the domain being represented as vectors.
As such, when we say "linear map", we can think of a generalization of matrix multiplication that makes sense in infinite dimensional spaces like Hilbert spaces, since calling such infinite dimensional maps "matrices" is stretching it a bit, since we would need to specify infinitely many rows and columns.
The prototypical building block of infinite dimensional linear map is the derivative. In that case, the vectors being operated upon are functions, which cannot therefore be specified by a finite number of parameters, e.g.
For example, the left side of the time-independent Schrödinger equation is a linear map. And the time-independent Schrödinger equation can be seen as a eigenvalue problem.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact