Dietterich Labs by Ciro Santilli 37 Updated 2025-07-16
Unfortunately the channel is too obsessed with mathematical detail (which it does amazingly), and does not give enough examples/application/intuition, which is what would be useful to most people, thus falling too much on the hardcore side of the missing link between basic and advanced.
This channel does have on merit however: compared to other university courses, it is much more direct, which might mean that you get to something interesting before you got bored to death, Section "You can learn more from older students than from faculty" comes to mind.
Videos generally involves short talks + a detailed read-through of a pre-prepared PDF. Dietterich has refused however giving the PDF or LaTeX source as of 2020 on comments unfortunately... what a wasted opportunity for society. TODO find the comment. Sam, if you ever Google yourself to this page, let's make a collab on OurBigBook.com and fucking change education forever man.
Video 1.
The Ultimate Goal Of My YouTube Channel by Dietterich Labs (2020)
Source. In this video Dietterich gives his ideal for the channel. Notably, he describes how the few experimental videos he has managed to make were done in a opportunistic way from experiments that were happening around him. This resonated with Ciro Santilli's ideas from videos of all key physics experiments.
Video 2.
Sam Dietterich interview by Dietterich Labs (2022)
Source. TODO find patience to watch and summarize key points.
Video 3.
The Sting Of Soft Corruption: My College Experience by Dietterich Labs
. Source. Academia is broken video.
ViaScience by Ciro Santilli 37 Updated 2025-07-16
Those guys are really good, Ciro Santilli especially enjoyed their quantum mechanics playlist: www.youtube.com/playlist?list=PL193BC0532FE7B02C
The quantum electrodynamics one was a bit too slow paced for Ciro unfortunately, too much groundwork and too little results.
Accompanying website with a tiny little bit of code: viascience.org/what.html
TODO: authors and their affiliation.
Videos licensed as CC BY-SA, those guys are so good.
These videos can give some geometric insight and do have their value.
And when things get "mathy", it sticks to a more qualitative view which may not be enough.
Very over the top with sexy demons and angels making appearances, and has some classic aesthetic artistic value :-)
The Whittaker model, often referred to in various contexts, primarily pertains to mathematical and statistical modeling in different fields, such as ecology, finance, and natural sciences. However, one of the more prominent references is the Whittaker model in the context of population dynamics and ecology. ### Whittaker's Classification of Plant Communities: In ecology, the Whittaker model refers to a classification system developed by the ecologist Robert Whittaker in the 1950s.
Experimental physics by Ciro Santilli 37 Updated 2025-07-16
Experiment and theory are like the yin and yang: opposites, but one cannot exist without the other.
Josephson effect by Ciro Santilli 37 Updated 2025-07-16
Discrete quantum effect observed in superconductors with a small insulating layer, a device known as a Josephson junction.
To understand the behaviour effect, it is important to look at the Josephson equations consider the following Josephson effect regimes separately:
A good summary from Wikipedia by physicist Andrew Whitaker:
at a junction of two superconductors, a current will flow even if there is no drop in voltage; that when there is a voltage drop, the current should oscillate at a frequency related to the drop in voltage; and that there is a dependence on any magnetic field
Bibliography:
Field (physics) by Ciro Santilli 37 Updated 2025-07-16
Quantum Field Theory lecture notes by David Tong (2007) puts it well:
In classical physics, the primary reason for introducing the concept of the field is to construct laws of Nature that are local. The old laws of Coulomb and Newton involve "action at a distance". This means that the force felt by an electron (or planet) changes immediately if a distant proton (or star) moves. This situation is philosophically unsatisfactory. More importantly, it is also experimentally wrong. The field theories of Maxwell and Einstein remedy the situation, with all interactions mediated in a local fashion by the field.
This is also mentioned e.g. at Video "The Quantum Experiment that ALMOST broke Locality by The Science Asylum (2019)".
In simple terms, if you believe in the Schrödinger equation and its modern probabilistic interpretation as described in the Schrödinger picture, then at first it seem that there is no strict causality to the outcome of experiments.
People have then tried to recover that by assuming that there is some inner sate beyond the Schrödinger equation, but these ideas are refuted by Bell test experiments, unless we give up the principle of locality, which feels more important, especially in special relativity, where faster-than-light implies time travel, which breaks causality even more dramatically.
The de Broglie-Bohm theory is a deterministic but non-local formulation of quantum mechanics.

Pinned article: Introduction to the OurBigBook Project

Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
We have two killer features:
  1. topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculus
    Articles of different users are sorted by upvote within each article page. This feature is a bit like:
    • a Wikipedia where each user can have their own version of each article
    • a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
    This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.
    Figure 1.
    Screenshot of the "Derivative" topic page
    . View it live at: ourbigbook.com/go/topic/derivative
  2. local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:
    This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
    Figure 2.
    You can publish local OurBigBook lightweight markup files to either https://OurBigBook.com or as a static website
    .
    Figure 3.
    Visual Studio Code extension installation
    .
    Figure 4.
    Visual Studio Code extension tree navigation
    .
    Figure 5.
    Web editor
    . You can also edit articles on the Web editor without installing anything locally.
    Video 3.
    Edit locally and publish demo
    . Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.
    Video 4.
    OurBigBook Visual Studio Code extension editing and navigation demo
    . Source.
  3. https://raw.githubusercontent.com/ourbigbook/ourbigbook-media/master/feature/x/hilbert-space-arrow.png
  4. Infinitely deep tables of contents:
    Figure 6.
    Dynamic article tree with infinitely deep table of contents
    .
    Descendant pages can also show up as toplevel e.g.: ourbigbook.com/cirosantilli/chordate-subclade
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact