A recreational computer simulation!
Although Ciro Santilli is a big fan of plaintext files and of Vim, not so for games. Games must be easy to understand since they are just a toy.
Tilesets to the rescue!
Made the website navbar and article lists more mobile friendly. Main motivation: improvised demos to people I meet IRL!
All indefinite orthogonal groups of matrices of equal metric signature are isomorphic Updated 2025-01-06 +Created 1970-01-01
Following the definition of the indefinite orthogonal group, we want to show that only the metric signature matters.
First we can observe that the exact matrices are different. For example, taking the standard matrix of :and:both have the same metric signature. However, we notice that a rotation of 90 degrees, which preserves the first form, does not preserve the second one! E.g. consider the vector , then . But after a rotation of 90 degrees, it becomes , and now ! Therefore, we have to search for an isomorphism between the two sets of matrices.
For example, consider the orthogonal group, which can be defined as shown at the orthogonal group is the group of all matrices that preserve the dot product can be defined as:
TODO vs all the others?
The opposite of freedom of speech.
There are unlisted articles, also show them or only show them.