Chemistry is fun. Too hard for precise physics (pre quantum computing, see also quantum chemistry), but not too hard for some maths like social sciences.
And it underpins biology.
S page 146.
Ciro Santilli's jaw dropped when he learned about this concept. A Small Talent for War, are you sure?
Superconductivity is one of the key advances of 21st century technology:
- produce powerful magnetic fields with superconducting magnets
- the Josephson effect, applications listed at: Section "Applications of Josephson Junctions"
The term loosely refers to certain layers of the computer abstraction layers hierarchy, usually high level hardware internals like CPU pipeline, caching and the memory system. Basically exactly what gem5 models.
The Dirac equation can be derived basically "directly" from the Representation theory of the Lorentz group for the spin half representation, this is shown for example at Physics from Symmetry by Jakob Schwichtenberg (2015) 6.3 "Dirac Equation".
The Diract equation is the spacetime symmetry part of the quantum electrodynamics Lagrangian, i.e. is describes how spin half particles behave without interactions. The full quantum electrodynamics Lagrangian can then be reached by adding the internal symmetry.
As mentioned at spin comes naturally when adding relativity to quantum mechanics, this same method allows us to analogously derive the equations for other spin numbers.
Bibliography:
Like the rest of the Standard Model Lagrangian, this can be split into two parts:
- spacetime symmetry: reaches the derivation of the Dirac equation, but has no interactions
- add the internal symmetry to add interactions, which reaches the full equation
Deriving the qED Lagrangian by Dietterich Labs (2018)
Source. As mentioned at the start of the video, he starts with the Dirac equation Lagrangian derived in a previous video. It has nothing to do with electromagnetism specifically.
He notes that that Dirac Lagrangian, besides being globally Lorentz invariant, it also also has a global invariance.
However, it does not have a local invariance if the transformation depends on the point in spacetime.
He doesn't mention it, but I think this is highly desirable, because in general local symmetries of the Lagrangian imply conserved currents, and in this case we want conservation of charges.
To fix that, he adds an extra gauge field (a field of matrices) to the regular derivative, and the resulting derivative has a fancy name: the covariant derivative.
Then finally he notes that this gauge field he had to add has to transform exactly like the electromagnetic four-potential!
So he uses that as the gauge, and also adds in the Maxwell Lagrangian in the same go. It is kind of a guess, but it is a natural guess, and it turns out to be correct.
There are unlisted articles, also show them or only show them.