100 Greatest Discoveries by the Discovery Channel (2004-2005) Updated 2024-12-15 +Created 1970-01-01
Hosted by Bill Nye.
Physics topics:
- Galileo: objects of different masses fall at the same speed, hammer and feather experiment
- Newton: gravity, linking locally observed falls and the movement of celestial bodies
- TODO a few more
- superconductivity, talk only at Fermilab accelerator, no re-enactment even...
- quark, interview with Murray Gell-Mann, mentions it was "an off-beat field, one wasn't encouraged to work on that". High level blablabla obviously.
- fundamental interactions, notably weak interaction and strong interaction, interview with Michio Kaku. When asked "How do we know that the weak force is there?" the answer is: "We observe radioactive decay with a Geiger counter". Oh, come on!
biology topics:
- Leeuwenhoek microscope and the discovery of microorganisms, and how pond water is not dead, but teeming with life. No sample of course.
- 1831 Robert Brown cell nucleus in plants, and later Theodor Schwann in tadpoles. This prepared the path for the idea that "all cells come from other cells", and the there seemed to be an unifying theme to all life: the precursor to DNA discoveries. Re-enactment, yay.
- 1971 Carl Woese and the discovery of archaea
Genetics:
- Mendel. Reenactment.
- 1909 Thomas Hunt Morgan with Drosophila melanogaster. Reenactment. Genes are in Chromosomes. He observed that a trait was linked to sex, and it was already known that sex was related to chromosomes.
- 1935 George Beadle and the one gene one enzyme hypothesis by shooting X-rays at bread mold
- 1942 Barbara McClintock, at Cold Spring Harbor Laboratory
- 1952 Hershey–Chase experiment. Determined that DNA is what transmits genetic information, not protein, by radioactive labelling both protein and DNA in two sets of bacteriophages. They observed that only the DNA radioactive material was passed forward.
- Crick Watson
- messenger RNA, no specific scientist, too many people worked on it, done partially with bacteriophage experiments
- 1968 Nirenberg genetic code
- 1972 Hamilton O. Smith and the discovery of restriction enzymes by observing that they were part of anti bacteriophage immune-system present in bacteria
- alternative splicing
- RNA interference
- Human Genome Project, interview with Craig Venter.
Medicine:
- blood circulation
- anesthesia
- X-ray
- germ theory of disease, with examples from Ignaz Semmelweis and Pasteur
- 1796 Edward Jenner discovery of vaccination by noticing that cowpox cowpox infected subjects were immune
- vitamin by observing scurvy and beriberi in sailors, confirmed by Frederick Gowland Hopkins on mice experiments
- Fleming, Florey and Chain and the discovery of penicillin
- Prontosil
- diabetes and insulin
Archaea are more cosely related to the eukaryotes than bacteria Updated 2024-12-15 +Created 1970-01-01
Appears to have just one, other bacteria can have more. TODO position in NCBI. Sequence determined in 1979: www.ncbi.nlm.nih.gov/pmc/articles/PMC382992
Eukaryotes can do phatocytosis due to their cytoskeleton Updated 2024-12-15 +Created 1970-01-01
Power, Sex, Suicide by Nick Lane (2006) page 53 suggests that one tremendous advantage of eukaryotes over bacteria is their ability to change shape due to the presence of the cytoskeleton, and the lack of a rigid bacterial cell wall.
Imagine in a world where there are only bacteria, and you can eat entire bacteria in one go, what a huge advantage that is!
A cool thought: bacteria like E. Coli replicate every 20 minutes. A human replicates every 15 years. So how can multicellular beings possibly cope with the speed of evolution of parasites?
The answer is that within us, the adaptive immune system is a population of cells that evolves very quickly. So in a sense, within our bodies there is fast cell-level non-inheritable evolution happening daily!
The second protein to have its structure determined, after myoglobin, by X-ray crystallography, in 1965.
Breaks up peptidoglycan present in the bacterial cell wall, which is thicker in Gram-positive bacteria, which is what this enzyme seems to target.
Part of the inate immune system.
Previously known as "Food From Electricity", "NeoCarbonFood" sounds like a more commercializable version of it.
Uses electricity to electrolyse water into hydrogen and oxygen molecules, and then use bacteria that do hydrogen chemosynthesis to convert it into food.
PuntSeq is a side project led by a few University of Cambridge PhDs that aims to determine which bacteria are present in the River Cam.
In July 2019, the PuntSeq team got together with the awesome Cambridge Biomakespace, an awesome biology makerspace open to all, to create a two day science outreach activity showing their procedures.
The data collected in this experiment, together with other collection sessions done by the organizers actually led to a publication on eLife: elifesciences.org/articles/61504 "Freshwater monitoring by nanopore sequencing" by Lara Urban et al. (2021), so it is awesome to see that were are actual being part of "real science".
Ciro knows nothing about biology, but since he is very curious about it, he jumped at this opportunity, and decided to document things as well as his limited knowledge would allow.
All participants chipped in some money to help cover the experiment's costs. Ciro suspects that this activity was done partially to help crowdfund the experiment, but it was a worthy investment!
The impressions you get from the experiment as a software engineer will be:
- OMG, this is so labour intensive, why haven't they automated this
- OMG, this is frightening, all the 8 hours of work I've just done are present in that tiny plastic tube
- Amazing! Look at that apparatus! And the bio people are like: I've used this a million times, it's cheap and every lab has one, just work faster and don't break you piece of junk!
It is important to note that due to horizontal gene transfer, the early days of life, and still bacteria to this day due to bacterial conjugation, are actually a graph and not a tree, see also: Figure "Graph of life".
Definitely have a look at: coral of life representations.
Anything that is not eukaryote, i.e. archaea and bacteria, see e.g.: Figure "Coral of life by János Podani (2019)".
Not a clade, and therefore a term better forgotten!