Position and momentum space Updated +Created
One of the main reasons why physicists are obsessed by this topic is that position and momentum are mapped to the phase space coordinates of Hamiltonian mechanics, which appear in the matrix mechanics formulation of quantum mechanics, which offers insight into the theory, particularly when generalizing to relativistic quantum mechanics.
One way to think is: what is the definition of space space? It is a way to write the wave function such that:
  • the position operator is the multiplication by
  • the momentum operator is the derivative by
And then, what is the definition of momentum space? It is of course a way to write the wave function such that:
  • the momentum operator is the multiplication by
physics.stackexchange.com/questions/39442/intuitive-explanation-of-why-momentum-is-the-fourier-transform-variable-of-posit/39508#39508 gives the best idea intuitive idea: the Fourier transform writes a function as a (continuous) sum of plane waves, and each plane wave has a fixed momentum.
Quantum computers as experiments that are hard to predict outcomes Updated +Created
One possibly interesting and possibly obvious point of view, is that a quantum computer is an experimental device that executes a quantum probabilistic experiment for which the probabilities cannot be calculated theoretically efficiently by a nuclear weapon.
This is how quantum computing was originally theorized by the likes of Richard Feynman: they noticed that "Hey, here's a well formulated quantum mechanics problem, which I know the algorithm to solve (calculate the probability of outcomes), but it would take exponential time on the problem size".
The converse is then of course that if you were able to encode useful problems in such an experiment, then you have a computer that allows for exponential speedups.
This can be seen very directly by studying one specific quantum computer implementation. E.g. if you take the simplest to understand one, photonic quantum computer, you can make systems for which you need exponential time to calculate the probabilities that photons will exit through certain holes and not others.
The obvious aspect of this idea is by coming from quantum logic gates are needed because you can't compute the matrix explicitly as it grows exponentially: knowing the full explicit matrix is impossible in practice, and knowing the matrix is equivalent to knowing the probabilities of every outcome.
Quantum electrodynamics Updated +Created
Theory that describes electrons and photons really well, and as Feynman puts it "accounts very precisely for all physical phenomena we have ever observed, except for gravity and nuclear physics" ("including the laughter of the crowd" ;-)).
Learning it is one of Ciro Santilli's main intellectual fetishes.
While Ciro acknowledges that QED is intrinsically challenging due to the wide range or requirements (quantum mechanics, special relativity and electromagnetism), Ciro feels that there is a glaring gap in this moneyless market for a learning material that follows the Middle Way as mentioned at: the missing link between basic and advanced. Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979) is one of the best attempts so far, but it falls a bit too close to the superficial side of things, if only Feynman hadn't assumed that the audience doesn't know any mathematics...
The funny thing is that when Ciro Santilli's mother retired, learning it (or as she put it: "how photons and electrons interact") was also one of her retirement plans. She is a pharmacist by training, and doesn't know much mathematics, and her English was somewhat limited. Oh, she also wanted to learn how photosynthesis works (possibly not fully understood by science as that time, 2020). Ambitious old lady!!!
Combines special relativity with more classical quantum mechanics, but further generalizing the Dirac equation, which also does that: Dirac equation vs quantum electrodynamics. The name "relativistic" likely doesn't need to appear on the title of QED because Maxwell's equations require special relativity, so just having "electro-" in the title is enough.
Before QED, the most advanced theory was that of the Dirac equation, which was already relativistic but TODO what was missing there exactly?
As summarized at: youtube.com/watch?v=_AZdvtf6hPU?t=305 Quantum Field Theory lecture at the African Summer Theory Institute 1 of 4 by Anthony Zee (2004):
  • classical mechanics describes large and slow objects
  • special relativity describes large and fast objects (they are getting close to the speed of light, so we have to consider relativity)
  • classical quantum mechanics describes small and slow objects.
  • QED describes objects that are both small and fast
That video also mentions the interesting idea that:
Therefore, for small timescales, energy can vary a lot. But mass is equivalent to energy. Therefore, for small time scale, particles can appear and disappear wildly.
QED is the first quantum field theory fully developed. That framework was later extended to also include the weak interaction and strong interaction. As a result, it is perhaps easier to just Google for "Quantum Field Theory" if you want to learn QED, since QFT is more general and has more resources available generally.
Like in more general quantum field theory, there is on field for each particle type. In quantum field theory, there are only two fields to worry about:
Video 1.
Lecture 01 | Overview of Quantum Field Theory by Markus Luty (2013)
Source. This takes quite a direct approach, one cool thing he says is how we have to be careful with adding special relativity to the Schrödinger equation to avoid faster-than-light information.
Quantum key distribution Updated +Created
Man-in-the-middle attack
quantumcomputing.stackexchange.com/questions/142/advantage-of-quantum-key-distribution-over-post-quantum-cryptography/25727#25727 Advantage of quantum key distribution over post-quantum cryptography has Ciro Santilli's comparison to classical encryption.
BB84 is a good first algorithm to look into.
Long story short:
  • QKD allows you to generate shared keys without public-key cryptography. You can then use thses shared keys
  • QKD requires authentication on a classical channel, exactly like a classical public-key cryptography forward secrecy would. The simplest way to do this is a with a pre-shared key, just like in classical public key cryptography. If that key is compromised at any point, your future messages can get man-in-the-middle'd, exactly like in classical cryptography.
QKD uses quantum mechanics stuff to allow sharing unsnoopable keys: you can detect any snooping and abort communication. Unsnoopability is guaranteed by the known laws of physics, up only to engineering imperfections.
Furthermore, it allows this key distribution without having to physically take a box by car somewhere: once the channel is established, e.g. optical fiber, you can just keep generating perfect keys from it. Otherwise it would be pointless, as you could just drive your one-time pad key every time.
However, the keys likely have a limited rate of generation, so you can't just one-time pad the entire message, except for small text messages. What you would then do is to use the shared key with symmetric encryption.
Therefore, this setup usually ultimately relies on the idea that we believe that symmetric encryption is safer than , even though there aren't mathematical safety proofs of either as of 2020.
Real world applications of the Lebesgue integral Updated +Created
In "practice" it is likely "useless", because the functions that it can integrate that Riemann can't are just too funky to appear in practice :-)
Its value is much more indirect and subtle, as in "it serves as a solid basis of quantum mechanics" due to the definition of Hilbert spaces.
Relativistic quantum mechanics Updated +Created
The first really good quantum mechanics theory made compatible with special relativity was the Dirac equation.
TODO: does it use full blown QED, or just something intermediate?
www.youtube.com/watch?v=NtnsHtYYKf0 "Mercury and Relativity - Periodic Table of Videos" by Periodic Videos (2013). Doesn't give the key juicy details/intuition. Also mentioned on Wikipedia: en.wikipedia.org/wiki/Relativistic_quantum_chemistry#Mercury
Richard Feynman Updated +Created
Some of Feynman's key characteristics are:
  • obsession with understanding the experiments well, see also Section "How to teach and learn physics"
  • when doing more mathematical stuff, analogous obsession about starting with a concrete example and then generalizing that into the theory
  • liked to teach others. At Surely You're Joking, Mr. Feynman for example he mentions that one key problem of the Institute for Advanced Study is that they didn't have to teach, and besides that making you feel useless when were not having new ideas, it is also the case that student's questions often inspire you to look again in some direction which sometimes happens to be profitable
    He hated however mentoring others one to one, because almost everyone was too stupid for him
  • interest in other natural sciences, and also random art and culture (and especially if it involves pretty women)
Some non-Physics related ones, mostly highlighted at Genius: Richard Feynman and Modern Physics by James Gleick (1994):
Even Apple thinks so according to their Think different campaign: www.feynman.com/fun/think-different/
Feynman was apparently seriously interested/amused by computer:
Video 1.
Murray Gell-Mann talks about Richard Feynman's intentional anecdote creation
. Source. TODO original interviewer, date and source. Very amusing, he tells how Feynman wouldn't brush his teeth, or purposefully forget to wear jacket and tie when going to the faculty canteen where it was required and so he would use ugly emergency jacket the canteen offered to anyone who had forgotten theirs.
Video 2.
Murray Gell-Mann talks about Feynman's partons by Web of Stories (1997)
Source. Listener is likely this Geoffrey West. Key quote:
Feynman of course, as usual, put it in a form so that the common people could use it, and experimentalists all over the world now thought they understood things because Feynman had put it in such simple language for them.
Two official websites?
In 1948 he published his reworking of classical quantum mechanics in terms of the path integral formulation: journals.aps.org/rmp/abstract/10.1103/RevModPhys.20.367 Space Time Approach to nonrelativistic quantum mechanics (paywalled 2021)
Schrödinger equation Updated +Created
Experiments explained:
Experiments not explained: those that the Dirac equation explains like:
To get some intuition on the equation on the consequences of the equation, have a look at:
The easiest to understand case of the equation which you must have in mind initially that of the Schrödinger equation for a free one dimensional particle.
Then, with that in mind, the general form of the Schrödinger equation is:
Equation 1.
Schrodinger equation
.
where:
  • is the reduced Planck constant
  • is the wave function
  • is the time
  • is a linear operator called the Hamiltonian. It takes as input a function , and returns another function. This plays a role analogous to the Hamiltonian in classical mechanics: determining it determines what the physical system looks like, and how the system evolves in time, because we can just plug it into the equation and solve it. It basically encodes the total energy and forces of the system.
The argument of could be anything, e.g.:
Note however that there is always a single magical time variable. This is needed in particular because there is a time partial derivative in the equation, so there must be a corresponding time variable in the function. This makes the equation explicitly non-relativistic.
The general Schrödinger equation can be broken up into a trivial time-dependent and a time-independent Schrödinger equation by separation of variables. So in practice, all we need to solve is the slightly simpler time-independent Schrödinger equation, and the full equation comes out as a result.
Spectral line Updated +Created
A single line in the emission spectrum.
So precise, so discrete, which makes no sense in classical mechanics!
Has been the leading motivation of the development of quantum mechanics, all the way from the:
Why you should give money to Ciro Santilli Updated +Created
So that he can work full time on OurBigBook.com and revolutionize advanced university-level science, technology, engineering, and mathematics eduction for all ages.
Donating to Ciro is the most effective donation per dollar that you can make to:
Ciro's goal in life is to help kids as young as possible to reach, and the push, the frontiers of natural sciences human knowledge, linking it to applications that might be the the next big thing as early as possible. Because nothing is more motivating to students than that feeling of:
Hey, I can actually do something in this area that has never been done before!
rather than repeating the same crap that everyone is already learning.
To do this, Ciro wants to work in parallel both on:
Ciro believes that this rare combination of both:produces a virtuous circle, because Ciro:
  • wants to learn and teach, so he starts to create content
  • then he notices the teaching tools are crap
  • and since he has the ability to actually improve them, he does
As explained at OurBigBook.com and high flying bird scientist, Ciro is most excited to make contributions at the "missing middle level of specialization" that lies around later undergrad and lower grad education:
  • at lower undergrad level, there is already a lot of free material out there to learn stuff
  • at upper graduate level and beyond, too few people know about each specific subject, that it becomes hard to factor things out
But on that middle sweet spot, Ciro believes that something can be done, in such as way that delivers:
  • beauty
  • power
in a way that is:
  • in your face, without requiring you to study for a year
  • but also giving enough precision to allow you to truly appreciate the beauty of the subject
    Ciro's programming skills can also be used to create educational, or actually more production-like, simulations and illustrations.
Ciro believes that today's society just keep saying over and over: "STEM is good", "STEM is good", "STEM is good" as a religious mantra, but fails miserably at providing free learning material and interaction opportunities for people to actually learn it at a deep enough level to truly appreciate why "STEM is good". This is what he wants to fix.
The following quote is ripped from Gwern Branwen's Patreon page, and it perfectly synthesizes how Ciro feels as well:
Quote 1.
Omar Khayyam's chill out quote
.
Omar Khayyam also came to the Vizier... but not to ask for title or office. 'The greatest boon you can confer on me,' he said, 'is to let me live in a corner under the shadow of your fortune, to spread wide the advantages of Science, and pray for your long life and prosperity.'
In addition to all of this, financial support also helps Ciro continue his general community support activities:
The Fourier transform is a bijection in Updated +Created
As mentioned at Section "Plancherel theorem", some people call this part of Plancherel theorem, while others say it is just a corollary.
This is an important fact in quantum mechanics, since it is because of this that it makes sense to talk about position and momentum space as two dual representations of the wave function that contain the exact same amount of information.
ViaScience Updated +Created
Those guys are really good, Ciro Santilli especially enjoyed their quantum mechanics playlist: www.youtube.com/playlist?list=PL193BC0532FE7B02C
The quantum electrodynamics one was a bit too slow paced for Ciro unfortunately, too much groundwork and too little results.
Accompanying website with a tiny little bit of code: viascience.org/what.html
TODO: authors and their affiliation.
Videos licensed as CC BY-SA, those guys are so good.
Wheeler-Feynman absorber theory Updated +Created
What they presented on richard Feynman's first seminar in 1941. Does not include quantum mechanics it seems.