Starting in the 2019 redefinition of the SI base units, the elementary charge is assigned a fixed number, and the Ampere is based on it and on the second, which is beautiful.
This choice is not because we attempt to count individual electrons going through a wire, as it would be far too many to count!
Rather, it is because because there are two crazy quantum mechanical effects that give us macroscopic measures that are directly related to the electron charge. www.nist.gov/si-redefinition/ampere/ampere-quantum-metrology-triangle by the NIST explains that the two effects are:
- quantum Hall effect, which has discrete resistances of type:for integer values of .
- Josephson effect, used in the Josephson voltage standard. With the Inverse AC Josephson effect we are able to produce:per Josephson junction. This is about 2 microvolt / GHz, where GHz is a practical input frequency. Video "The evolution of voltage metrology to the latest generation of JVSs by Alain Rüfenacht" mentions that a typical operating frequency is 20 GHz.Therefore to attain a good 10 V, we need something in the order of a million Josephson junctions.But this is possible to implement in a single chip with existing micro fabrication techniques, and is exactly what the Josephson voltage standard does!
Those effect work because they also involve dividing by the Planck constant, the fundamental constant of quantum mechanics, which is also tiny, and thus brings values into a much more measurable order of size.
Notation used in quantum mechanics.
Ket is just a vector. Though generally in the context of quantum mechanics, this is an infinite dimensional vector in a Hilbert space like .
Bra is just the dual vector corresponding to a ket, or in other words projection linear operator, i.e. a linear function which can act on a given vector and returns a single complex number. Also known as... dot product.
For example:is basically a fancy way of saying:that is: we are taking the projection of along the direction. Note that in the ordinary dot product notation however, we don't differentiate as clearly what is a vector and what is an operator, while the bra-ket notation makes it clear.
The projection operator is completely specified by the vector that we are projecting it on. This is why the bracket notation makes sense.
It also has the merit of clearly differentiating vectors from operators. E.g. it is not very clear in that is an operator and is a vector, except due to the relative position to the dot. This is especially bad when we start manipulating operators by themselves without vectors.
This notation is widely used in quantum mechanics because calculating the probability of getting a certain outcome for an experiment is calculated by taking the projection of a state on one an eigenvalue basis vector as explained at: Section "Mathematical formulation of quantum mechanics".
Making the projection operator "look like a thing" (the bra) is nice because we can add and multiply them much like we can for vectors (they also form a vector space), e.g.:just means taking the projection along the direction.
Ciro Santilli thinks that this notation is a bit over-engineered. Notably the bra's are just vectors, which we should just write as usual with ... the bra thing makes it look scarier than it needs to be. And then we should just find a different notation for the projection part.
Maybe Dirac chose it because of the appeal of the women's piece of clothing: bra, in an irresistible call from British humour.
But in any case, alas, we are now stuck with it.
The idea tha taking the limit of the non-classical theories for certain parameters (relativity and quantum mechanics) should lead to the classical theory.
It appears that classical limit is only very strict for relativity. For quantum mechanics it is much more hand-wavy thing. See also: Subtle is the Lord by Abraham Pais (1982) page 55.
Mechanics before quantum mechanics and special relativity.
Condensed matter physics is one of the best examples of emergence. We start with a bunch of small elements which we understand fully at the required level (atoms, electrons, quantum mechanics) but then there are complex properties that show up when we put a bunch of them together.
Includes fun things like:
As of 2020, this is the other "fundamental branch of physics" besides to particle physics/nuclear physics.
Condensed matter is basically chemistry but without reactions: you study a fixed state of matter, not a reaction in which compositions change with time.
Just like in chemistry, you end up getting some very well defined substance properties due to the incredibly large number of atoms.
Just like chemistry, the ultimate goal is to do de-novo computational chemistry to predict those properties.
And just like chemistry, what we can actually is actually very limited in part due to the exponential nature of quantum mechanics.
Also since chemistry involves reactions, chemistry puts a huge focus on liquids and solutions, which is the simplest state of matter to do reactions in.
Condensed matter however can put a lot more emphasis on solids than chemistry, notably because solids are what we generally want in end products, no one likes stuff leaking right?
But it also studies liquids, e.g. notably superfluidity.
One thing condensed matter is particularly obsessed with is the fascinating phenomena of phase transition.
Unlike the simple case of a matrix, in infinite dimensional vector spaces, the spectrum may be continuous.
The quintessential example of that is the spectrum of the position operator in quantum mechanics, in which any real number is a possible eigenvalue, since the particle may be found in any position. The associated eigenvectors are the corresponding Dirac delta functions.
Basically the same as classical limit, but more for quantum mechanics.
The Klein-Gordon equation directly uses a more naive relativistic energy guess of squared.
But since this is quantum mechanics, we feel like making into the "momentum operator", just like in the Schrödinger equation.
But we don't really know how to apply the momentum operator twice, because it is a gradient, so the first application goes from a scalar field to the vector field, and the second one...
So we just cheat and try to use the laplace operator instead because there's some squares on it:
But then, we have to avoid taking the square root to reach a first derivative in time, because we don't know how to take the square root of that operator expression.
So the Klein-Gordon equation just takes the approach of using this squared Hamiltonian instead.
Since it is a Hamiltonian, and comparing it to the Schrödinger equation which looks like:taking the Hamiltonian twice leads to:
We can contrast this with the Dirac equation, which instead attempts to explicitly construct an operator which squared coincides with the relativistic formula: derivation of the Dirac equation.
The "0-width" pulse distribution that integrates to a step.
There's not way to describe it as a classical function, making it the most important example of a distribution.
Applications:
- position operator in quantum mechanics. It's not a coincidence that the function is named after Paul Dirac.
Generalize function to allow adding some useful things which people wanted to be classical functions but which are not,
It therefore requires you to redefine and reprove all of calculus.
For this reason, most people are tempted to assume that all the hand wavy intuitive arguments undergrad teachers give are true and just move on with life. And they generally are.
One notable example where distributions pop up are the eigenvectors of the position operator in quantum mechanics, which are given by Dirac delta functions, which is most commonly rigorously defined in terms of distribution.
Distributions are also defined in a way that allows you to do calculus on them. Notably, you can define a derivative, and the derivative of the Heaviside step function is the Dirac delta function.
Amazingly confirms the wave particle duality of quantum mechanics.
The effect is even more remarkable when done with individual particles such individual photons or electrons.
Richard Feynman liked to stress how this experiment can illustrate the core ideas of quantum mechanics. Notably, he night have created the infinitely many slits thought experiment which illustrates the path integral formulation.
Dual vectors are the members of a dual space.
In the context of tensors , we use raised indices to refer to members of the dual basis vs the underlying basis:The dual basis vectors are defined to "pick the corresponding coordinate" out of elements of V. E.g.:By expanding into the basis, we can put this more succinctly with the Kronecker delta as:
Note that in Einstein notation, the components of a dual vector have lower indices. This works well with the upper case indices of the dual vectors, allowing us to write a dual vector as:
In the context of quantum mechanics, the bra notation is also used for dual vectors.
One important quantum mechanics experiment, which using quantum effects explain the dependency of specific heat capacity on temperature, an effect which is not present in the Dulong-Petit law.
This is the solid-state analogue to the black-body radiation problem. It is also therefore a quantum mechanics-specific phenomenon.
OK, can someone please just stop the philosophy and give numerical predictions of how entropy helps you predict the future?
The original notion of entropy, and the first one you should study, is the Clausius entropy.
For entropy in chemistry see: entropy of a chemical reaction.
- www.quantamagazine.org/what-is-entropy-a-measure-of-just-how-little-we-really-know-20241213/ What Is Entropy? A Measure of Just How Little We Really Know. on Quanta Magazine attempts to make the point that entropy is observer dependant. TODO details on that.
The half-life of radioactive decay, which as discovered a few years before quantum mechanics was discovered and matured, was a major mystery. Why do some nuclei fission in apparently random fashion, while others don't? How is the state of different nuclei different from one another? This is mentioned in Inward Bound by Abraham Pais (1988) Chapter 6.e Why a half-life?
The term also sees use in other areas, notably biology, where e.g. RNAs spontaneously decay as part of the cell's control system, see e.g. mentions in E. Coli Whole Cell Model by Covert Lab.