Combinatorial group theory is a branch of mathematics that studies groups by using combinatorial methods and techniques. It focuses on understanding the properties of groups through their presentations, generators, and relations. The main goal is to analyze and classify groups by examining how these elements can be combined and related in various ways.
A vacuum is a space that is essentially devoid of matter, meaning it has very low pressure and density, and contains very few particles, such as atoms or molecules. In an ideal vacuum, there would be no air or any other substances; however, achieving a perfect vacuum is practically impossible. In physics, vacuums are often described in terms of pressure, with standard atmospheric pressure at sea level being about 101,325 pascals (or 1 atmosphere).
Ancient Greek physicists, often referred to as early natural philosophers, were thinkers and scholars in ancient Greece who sought to understand the nature of the physical world. They laid the foundations for various fields of study, including physics, astronomy, and cosmology, through a combination of observation, reasoning, and speculation. Some of the most notable figures include: 1. **Thales of Miletus (c.
Algebraic groups are a central concept in an area of mathematics that blends algebra, geometry, and number theory. An algebraic group is defined as a group that is also an algebraic variety, meaning that its group operations (multiplication and inversion) can be described by polynomial equations. More formally, an algebraic group is a set that satisfies the group axioms (associativity, identity, and inverses) and is also equipped with a structure of an algebraic variety.
Pinned article: ourbigbook/introduction-to-the-ourbigbook-project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 2. You can publish local OurBigBook lightweight markup files to either OurBigBook.com or as a static website.Figure 3. Visual Studio Code extension installation.Figure 5. . You can also edit articles on the Web editor without installing anything locally. Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact