Sample implementations:
Integer factorization algorithms better than Shor's algorithm by
Ciro Santilli 37 Updated 2025-07-16
- 2023 www.schneier.com/blog/archives/2023/01/breaking-rsa-with-a-quantum-computer.html comments on "Factoring integers with sublinear resources on a superconducting quantum processor” arxiv.org/pdf/2212.12372.pdf
A group of Chinese researchers have just published a paper claiming that they can—although they have not yet done so—break 2048-bit RSA. This is something to take seriously. It might not be correct, but it’s not obviously wrong.We have long known from Shor’s algorithm that factoring with a quantum computer is easy. But it takes a big quantum computer, on the orders of millions of qbits, to factor anything resembling the key sizes we use today. What the researchers have done is combine classical lattice reduction factoring techniques with a quantum approximate optimization algorithm. This means that they only need a quantum computer with 372 qbits, which is well within what’s possible today. (The IBM Osprey is a 433-qbit quantum computer, for example. Others are on their way as well.)
These appear to be benchmarks that don't involve running anything concretely, just compiling and likely then counting gates:
Presumably the point of it is to allow simulation in classical computers?
Technique that uses multiple non-ideal qubits (physical qubits) to simulate/produce one perfect qubit (logical).
One is philosophically reminded of classical error correction codes, where we also have multiple input bits per actual information bit.
TODO understand in detail. This appears to be a fundamental technique since all physical systems we can manufacture are imperfect.
Part of the fundamental interest of this technique is due to the quantum threshold theorem.
For example, when PsiQuantum raised 215M in 2020, they announced that they intended to reach 1 million physical qubits, which would achieve between 100 and 300 logical qubits.
Video "Jeremy O'Brien: "Quantum Technologies" by GoogleTechTalks (2014)" youtu.be/7wCBkAQYBZA?t=2778 describes an error correction approach for a photonic quantum computer.
Bibliography:
This theorem roughly states that states that for every quantum algorithm, once we reach a certain level of physical error rate small enough (where small enough is algorithm dependant), then we can perfectly error correct.
This algorithm provides the conceptual division between noisy intermediate-scale quantum era and post-NISQ.
Era of quantum computing before we reach physical errors small enough to do perfect quantum error correction as demonstrated by the quantum threshold theorem.
A quantum algorithm that is thought to be more likely to be useful in the NISQ era of quantum computing.
TODO clear example of the computational problem that it solves.
This is a term "invented" by Ciro Santilli to refer to quantum compilers that are able to convert non-specifically-quantum (functional, since there is no state in quantum software) programs into quantum circuit.
The term is made by adding "quantum" to the more "classical" concept of "high-level synthesis", which refers to software that converts an imperative program into register transfer level hardware, typicially for FPGA applications.
It is hard to beat the list present at Quantum computing report: quantumcomputingreport.com/players/.
The much less-complete Wikipedia page is also of interest: en.wikipedia.org/wiki/List_of_companies_involved_in_quantum_computing_or_communication It has the merit of having a few extra columns compared to Quantum computing report.
- Paulo Nussenzveig physics researcher at University of São Paulo. Laboratory page: portal.if.usp.br/lmcal/pt-br/node/323: LMCAL, laboratory of coherent manipulation of atoms and light. Google Scholar: scholar.google.com/citations?user=FbGL0BEAAAAJ
- Brazil Quantum: interest group created by students. Might be a software consultancy: www.terra.com.br/noticias/tecnologia/inovacao/pesquisadores-paulistas-tentam-colocar-brasil-no-mapa-da-computacao-quantica,2efe660fbae16bc8901b1d00d139c8d2sz31cgc9.html
- DOBSLIT dobslit.com/en/the-company/ company in São Carlos, as of 2022 a quantum software consultancy with 3 people: www.linkedin.com/search/results/people/?currentCompany=%5B%2272433615%22%5D&origin=COMPANY_PAGE_CANNED_SEARCH&sid=TAj two of them from the Federal University of São Carlos
- computacaoquanticabrasil.com/ Website half broken as of 2022. Mentions a certain Lagrange Foundation, but their website is down.
- QuInTec academic interest group
- www.terra.com.br/noticias/tecnologia/inovacao/pesquisadores-paulistas-tentam-colocar-brasil-no-mapa-da-computacao-quantica,2efe660fbae16bc8901b1d00d139c8d2sz31cgc9.html mentions 6 professors, 3 from USP 3 from UNICAMP interest group:
- drive.google.com/file/d/1geGaRuCpRHeuLH2MLnLoxEJ1iOz4gNa9/view white paper gives all names
- Celso Villas-Bôas
- Frederico Brito
- Gustavo Wiederhecker
- Marcelo Terra Cunha
- Paulo Nussenzveig
- Philippe Courteille
- sites.google.com/unicamp.br/quintec/home their website.
- a 2021 symposium they organized: www.saocarlos.usp.br/dia-09-quintec-quantum-engineering-workshop/ some people of interest:
- Samuraí Brito www.linkedin.com/in/samuraí-brito-4a57a847/ at Itaú Unibanco, a Brazilian bank
- www.linkedin.com/in/dario-sassi-thober-5ba2923/ from wvblabs.com.br/
- www.linkedin.com/in/roberto-panepucci-phd from en.wikipedia.org/wiki/Centro_de_Pesquisas_Renato_Archer in Campinas
- Quanby quantum software in Florianópolis, founder Eduardo Duzzioni
- thequantumhubs.com/category/quantum-brazil-news/ good links
- qubit.lncc.br/?lang=en Quantum Computing Group of the National Laboratory for Scientific Computing: pt.wikipedia.org/wiki/Laboratório_Nacional_de_Computação_Científica in Rio. The principal researcher seems to be www.lncc.br/~portugal/. He knows what GitHub is: github.com/programaquantica/tutoriais, PDF without .tex though.
- quantum-latino.com/ conference. E.g. 2022: www.canva.com/design/DAFErjU3Wvk/2xo25nEuqv9O7RbCPLNEkw/view
Pinned article: Introduction to the OurBigBook Project
Welcome to the OurBigBook Project! Our goal is to create the perfect publishing platform for STEM subjects, and get university-level students to write the best free STEM tutorials ever.
Everyone is welcome to create an account and play with the site: ourbigbook.com/go/register. We belive that students themselves can write amazing tutorials, but teachers are welcome too. You can write about anything you want, it doesn't have to be STEM or even educational. Silly test content is very welcome and you won't be penalized in any way. Just keep it legal!
Intro to OurBigBook
. Source. We have two killer features:
- topics: topics group articles by different users with the same title, e.g. here is the topic for the "Fundamental Theorem of Calculus" ourbigbook.com/go/topic/fundamental-theorem-of-calculusArticles of different users are sorted by upvote within each article page. This feature is a bit like:
- a Wikipedia where each user can have their own version of each article
- a Q&A website like Stack Overflow, where multiple people can give their views on a given topic, and the best ones are sorted by upvote. Except you don't need to wait for someone to ask first, and any topic goes, no matter how narrow or broad
This feature makes it possible for readers to find better explanations of any topic created by other writers. And it allows writers to create an explanation in a place that readers might actually find it.Figure 1. Screenshot of the "Derivative" topic page. View it live at: ourbigbook.com/go/topic/derivativeVideo 2. OurBigBook Web topics demo. Source. - local editing: you can store all your personal knowledge base content locally in a plaintext markup format that can be edited locally and published either:This way you can be sure that even if OurBigBook.com were to go down one day (which we have no plans to do as it is quite cheap to host!), your content will still be perfectly readable as a static site.
- to OurBigBook.com to get awesome multi-user features like topics and likes
- as HTML files to a static website, which you can host yourself for free on many external providers like GitHub Pages, and remain in full control
Figure 3. Visual Studio Code extension installation.Figure 4. Visual Studio Code extension tree navigation.Figure 5. Web editor. You can also edit articles on the Web editor without installing anything locally.Video 3. Edit locally and publish demo. Source. This shows editing OurBigBook Markup and publishing it using the Visual Studio Code extension.Video 4. OurBigBook Visual Studio Code extension editing and navigation demo. Source. - Infinitely deep tables of contents:
All our software is open source and hosted at: github.com/ourbigbook/ourbigbook
Further documentation can be found at: docs.ourbigbook.com
Feel free to reach our to us for any help or suggestions: docs.ourbigbook.com/#contact





