Ciro Santilli really liked the battle mode on this.
Reduction of an elliptic curve over the rational numbers to an elliptic curve over a finite field mod p Updated 2025-01-10 +Created 1970-01-01
This construction takes as input:and it produces an elliptic curve over a finite field of order as output.
- elliptic curve over the rational numbers
- a prime number
The constructions is used in the Birch and Swinnerton-Dyer conjecture.
To do it, we just convert the coefficients and from the Equation "Definition of the elliptic curves" from rational numbers to elements of the finite field.
For example, suppose we have and we are using .
For the denominator , we just use the multiplicative inverse, e.g. supposing we havewhere because , related: math.stackexchange.com/questions/1204034/elliptic-curve-reduction-modulo-p
This is a family of computers. It was a big success. It appears that this was a big unification project of previous architectures. And it also gave software portability guarantees with future systems, since writing software was starting to become as expensive as the hardware itself.
A single line in the emission spectrum.
So precise, so discrete, which makes no sense in classical mechanics!
Has been the leading motivation of the development of quantum mechanics, all the way from the:
- Schrödinger equation: major lines predicted, including Zeeman effect, but not finer line splits like fine structure
- Dirac equation: explains fine structure 2p spin split due to electron spin/orbit interactions, but not Lamb shift
- quantum electrodynamics: explains Lamb shift
- hyperfine structure: due to electron/nucleus spin interactions, offers a window into nuclear spin
As seen from explicit scalar form of the Maxwell's equations, this expands to 8 equations, so the question arises if the system is over-determined because it only has 6 functions to be determined.
As explained on the Wikipedia page however, this is not the case, because if the first two equations hold for the initial condition, then the othe six equations imply that they also hold for all time, so they can be essentially omitted.
It is also worth noting that the first two equations don't involve time derivatives. Therefore, they can be seen as spacial constraints.
TODO: the electric field and magnetic field can be expressed in terms of the electric potential and magnetic vector potential. So then we only need 4 variables?
Unlisted articles are being shown, click here to show only listed articles.