Eccentric nerdy slow speaking physicist mostly based in University of Cambridge.
Created the Dirac equation, what else do you need to know?!
QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga by Silvan Schweber (1994) chapter 1.3 "P.A.M. Dirac and the Birth of Quantum Electrodynamics" quotes Dirac saying how being at high school during World War I was an advantage, since all slightly older boys were being sent to war, and so the younger kids were made advance as fast as they could through subjects. Exactly the type of thing Ciro Santilli wants to achieve with OurBigBook.com, but without the need for a world war hopefully.
Dirac was a staunch atheist having said during the Fifth Solvay Conference (1927)[ref]:
If we are honest - and scientists have to be - we must admit that religion is a jumble of false assertions, with no basis in reality. The very idea of God is a product of the human imagination. It is quite understandable why primitive people, who were so much more exposed to the overpowering forces of nature than we are today, should have personified these forces in fear and trembling. But nowadays, when we understand so many natural processes, we have no need for such solutions. I can't for the life of me see how the postulate of an Almighty God helps us in any way. What I do see is that this assumption leads to such unproductive questions as why God allows so much misery and injustice, the exploitation of the poor by the rich and all the other horrors He might have prevented. If religion is still being taught, it is by no means because its ideas still convince us, but simply because some of us want to keep the lower classes quiet. Quiet people are much easier to govern than clamorous and dissatisfied ones. They are also much easier to exploit. Religion is a kind of opium that allows a nation to lull itself into wishful dreams and so forget the injustices that are being perpetrated against the people. Hence the close alliance between those two great political forces, the State and the Church. Both need the illusion that a kindly God rewards - in heaven if not on earth - all those who have not risen up against injustice, who have done their duty quietly and uncomplainingly. That is precisely why the honest assertion that God is a mere product of the human imagination is branded as the worst of all mortal sins.
Theory that describes electrons and photons really well, and as Feynman puts it "accounts very precisely for all physical phenomena we have ever observed, except for gravity and nuclear physics" ("including the laughter of the crowd" ;-)).
Learning it is one of Ciro Santilli's main intellectual fetishes.
While Ciro acknowledges that QED is intrinsically challenging due to the wide range or requirements (quantum mechanics, special relativity and electromagnetism), Ciro feels that there is a glaring gap in this moneyless market for a learning material that follows the Middle Way as mentioned at: the missing link between basic and advanced. Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979) is one of the best attempts so far, but it falls a bit too close to the superficial side of things, if only Feynman hadn't assumed that the audience doesn't know any mathematics...
The funny thing is that when Ciro Santilli's mother retired, learning it (or as she put it: "how photons and electrons interact") was also one of her retirement plans. She is a pharmacist by training, and doesn't know much mathematics, and her English was somewhat limited. Oh, she also wanted to learn how photosynthesis works (possibly not fully understood by science as that time, 2020). Ambitious old lady!!!
Experiments: quantum electrodynamics experiments.
Combines special relativity with more classical quantum mechanics, but further generalizing the Dirac equation, which also does that: Dirac equation vs quantum electrodynamics. The name "relativistic" likely doesn't need to appear on the title of QED because Maxwell's equations require special relativity, so just having "electro-" in the title is enough.
Before QED, the most advanced theory was that of the Dirac equation, which was already relativistic but TODO what was missing there exactly?
As summarized at: youtube.com/watch?v=_AZdvtf6hPU?t=305 Quantum Field Theory lecture at the African Summer Theory Institute 1 of 4 by Anthony Zee (2004):
- classical mechanics describes large and slow objects
- special relativity describes large and fast objects (they are getting close to the speed of light, so we have to consider relativity)
- classical quantum mechanics describes small and slow objects.
- QED describes objects that are both small and fast
That video also mentions the interesting idea that:Therefore, for small timescales, energy can vary a lot. But mass is equivalent to energy. Therefore, for small time scale, particles can appear and disappear wildly.
- in special relativity, we have the mass-energy equivalence
- in quantum mechanics, thinking along the time-energy uncertainty principle,
QED is the first quantum field theory fully developed. That framework was later extended to also include the weak interaction and strong interaction. As a result, it is perhaps easier to just Google for "Quantum Field Theory" if you want to learn QED, since QFT is more general and has more resources available generally.
Like in more general quantum field theory, there is on field for each particle type. In quantum field theory, there are only two fields to worry about:
- photon field
- electromagnetism field
Experiments explained by QED but not by the Dirac equation:
- Lamb shift: by far the most famous one
- hyperfine structure TODO confirm
- anomalous magnetic dipole moment of the electron
Quantum mechanics is quite a broad term. Perhaps it is best to start approaching it from the division into:
- non-relativistic quantum mechanics: obviously the simpler one, and where you should start
- relativistic quantum mechanics: more advanced, and arguably "less useful"
Key experiments that could not work without quantum mechanics: Section "Quantum mechanics experiment".
Mathematics: there are a few models of increasing precision which could all be called "quantum mechanics":
Ciro Santilli feels that the largest technological revolutions since the 1950's have been quantum related, and will continue to be for a while, from deeper understanding of chemistry and materials to quantum computing, understanding and controlling quantum systems is where the most interesting frontier of technology lies.
For the UCSD Physics 130 course.
Last updated: 2013.
Very good! Goes up to the Dirac equation.
There were apparently some lecture videos at: web.archive.org/web/20030604194654/http://physicsstream.ucsd.edu/courses/spring2003/physics130a/ as pointed out by Matthew Heaney[ref], .mov files can be found at: web.archive.org/web/*/http://physicsstream.ucsd.edu/courses/spring2003/physics130a/*, but we were yet unable to open them, related:
The first really good quantum mechanics theory made compatible with special relativity was the Dirac equation.
And then came quantum electrodynamics to improve it: Dirac equation vs quantum electrodynamics.
TODO: does it use full blown QED, or just something intermediate?
www.youtube.com/watch?v=NtnsHtYYKf0 "Mercury and Relativity - Periodic Table of Videos" by Periodic Videos (2013). Doesn't give the key juicy details/intuition. Also mentioned on Wikipedia: en.wikipedia.org/wiki/Relativistic_quantum_chemistry#Mercury
Experiments explained:
- via the Schrödinger equation solution for the hydrogen atom it predicts:
- spectral line basic lines, plus Zeeman effect
- Schrödinger equation solution for the helium atom: perturbative solutions give good approximations to the energy levels
- double-slit experiment: I think we have a closed solution for the max and min probabilities on the measurement wall, and they match experiments
Experiments not explained: those that the Dirac equation explains like:
- fine structure
- spontaneous emission coefficients
To get some intuition on the equation on the consequences of the equation, have a look at:
The easiest to understand case of the equation which you must have in mind initially that of the Schrödinger equation for a free one dimensional particle.
Then, with that in mind, the general form of the Schrödinger equation is:where:
- is the reduced Planck constant
- is the wave function
- is the time
- is a linear operator called the Hamiltonian. It takes as input a function , and returns another function. This plays a role analogous to the Hamiltonian in classical mechanics: determining it determines what the physical system looks like, and how the system evolves in time, because we can just plug it into the equation and solve it. It basically encodes the total energy and forces of the system.
The argument of could be anything, e.g.:Note however that there is always a single magical time variable. This is needed in particular because there is a time partial derivative in the equation, so there must be a corresponding time variable in the function. This makes the equation explicitly non-relativistic.
- we could have preferred polar coordinates instead of linear ones if the potential were symmetric around a point
- we could have more than one particle, e.g. solutions of the Schrodinger equation for two electrons, which would have e.g. and for different particles. No matter how many particles there are, we have just a single , we just add more arguments to it.
- we could have even more generalized coordinates. This is much in the spirit of Hamiltonian mechanics or generalized coordinates
The general Schrödinger equation can be broken up into a trivial time-dependent and a time-independent Schrödinger equation by separation of variables. So in practice, all we need to solve is the slightly simpler time-independent Schrödinger equation, and the full equation comes out as a result.
To better understand the discussion below, the best thing to do is to read it in parallel with the simplest possible example: Schrödinger picture example: quantum harmonic oscillator.
The state of a quantum system is a unit vector in a Hilbert space.
"Making a measurement" for an observable means applying a self-adjoint operator to the state, and after a measurement is done:Those last two rules are also known as the Born rule.
- the state collapses to an eigenvector of the self adjoint operator
- the result of the measurement is the eigenvalue of the self adjoint operator
- the probability of a given result happening when the spectrum is discrete is proportional to the modulus of the projection on that eigenvector.For continuous spectra such as that of the position operator in most systems, e.g. Schrödinger equation for a free one dimensional particle, the projection on each individual eigenvalue is zero, i.e. the probability of one absolutely exact position is zero. To get a non-zero result, measurement has to be done on a continuous range of eigenvectors (e.g. for position: "is the particle present between x=0 and x=1?"), and you have to integrate the probability over the projection on a continuous range of eigenvalues.In such continuous cases, the probability collapses to an uniform distribution on the range after measurement.The continuous position operator case is well illustrated at: Video "Visualization of Quantum Physics (Quantum Mechanics) by udiprod (2017)"
Self adjoint operators are chosen because they have the following key properties:
- their eigenvalues form an orthonormal basis
- they are diagonalizable
Perhaps the easiest case to understand this for is that of spin, which has only a finite number of eigenvalues. Although it is a shame that fully understanding that requires a relativistic quantum theory such as the Dirac equation.
The next steps are to look at simple 1D bound states such as particle in a box and quantum harmonic oscillator.
This naturally generalizes to Schrödinger equation solution for the hydrogen atom.
The solution to the Schrödinger equation for a free one dimensional particle is a bit harder since the possible energies do not make up a countable set.
This formulation was apparently called more precisely Dirac-von Neumann axioms, but it because so dominant we just call it "the" formulation.
Quantum Field Theory lecture notes by David Tong (2007) mentions that:
if you were to write the wavefunction in quantum field theory, it would be a functional, that is a function of every possible configuration of the field .
TODO. Can't find it easily. Anyone?
This is closely linked to the Pauli exclusion principle.
What does a particle even mean, right? Especially in quantum field theory, where two electrons are just vibrations of a single electron field.
Another issue is that if we consider magnetism, things only make sense if we add special relativity, since Maxwell's equations require special relativity, so a non approximate solution for this will necessarily require full quantum electrodynamics.
As mentioned at lecture 1 youtube.com/watch?video=H3AFzbrqH68&t=555, relativistic quantum mechanical theories like the Dirac equation and Klein-Gordon equation make no sense for a "single particle": they must imply that particles can pop in out of existence.
Bibliography:
- www.youtube.com/watch?v=Og13-bSF9kA&list=PLDfPUNusx1Eo60qx3Od2KLUL4b7VDPo9F "Advanced quantum theory" by Tobias J. Osborne says that the course will essentially cover multi-particle quantum mechanics!
- physics.stackexchange.com/questions/54854/equivalence-between-qft-and-many-particle-qm "Equivalence between QFT and many-particle QM"
- Course: Quantum Many-Body Physics in Condensed Matter by Luis Gregorio Dias (2020) from course: Quantum Many-Body Physics in Condensed Matter by Luis Gregorio Dias (2020) give a good introduction to non-interacting particles
A single line in the emission spectrum.
So precise, so discrete, which makes no sense in classical mechanics!
Has been the leading motivation of the development of quantum mechanics, all the way from the:
- Schrödinger equation: major lines predicted, including Zeeman effect, but not finer line splits like fine structure
- Dirac equation: explains fine structure 2p spin split due to electron spin/orbit interactions, but not Lamb shift
- quantum electrodynamics: explains Lamb shift
- hyperfine structure: due to electron/nucleus spin interactions, offers a window into nuclear spin
Leads to the Dirac equation.
Spin is one of the defining properties of elementary particles, i.e. number that describes how an elementary particle behaves, much like electric charge and mass.
Possible values are half integer numbers: 0, 1/2, 1, 3/2, and so on.
The approach shown in this section: Section "Spin comes naturally when adding relativity to quantum mechanics" shows what the spin number actually means in general. As shown there, the spin number it is a direct consequence of having the laws of nature be Lorentz invariant. Different spin numbers are just different ways in which this can be achieved as per different Representation of the Lorentz group.
Video 1. "Quantum Mechanics 9a - Photon Spin and Schrodinger's Cat I by ViaScience (2013)" explains nicely how:
- incorporated into the Dirac equation as a natural consequence of special relativity corrections, but not naturally present in the Schrödinger equation, see also: the Dirac equation predicts spin
- photon spin can be either linear or circular
- the linear one can be made from a superposition of circular ones
- straight antennas produce linearly polarized photos, and Helical antennas circularly polarized ones
- a jump between 2s and 2p in an atom changes angular momentum. Therefore, the photon must carry angular momentum as well as energy.
- cannot be classically explained, because even for a very large estimate of the electron size, its surface would have to spin faster than light to achieve that magnetic momentum with the known electron charge
- as shown at Video "Quantum Mechanics 12b - Dirac Equation II by ViaScience (2015)", observers in different frames of reference see different spin states
Do electrons spontaneously jump from high orbitals to lower ones emitting photons?
Explaining this was was one of the key initial achievements of the Dirac equation.
Yes, but this is not predicted by the Schrödinger equation, you need to go to the Dirac equation.
A critical application of this phenomena is laser.
See also:
- physics.stackexchange.com/questions/233330/why-do-electrons-jump-between-orbitals
- physics.stackexchange.com/questions/117417/quantum-mechanics-scattering-theory/522220#522220
- physics.stackexchange.com/questions/430268/stimulated-emission-how-can-giving-energy-to-electrons-make-them-decay-to-a-low/430288
What does it mean that photons are force carriers for electromagnetism? Updated 2024-12-15 +Created 1970-01-01
TODO find/create decent answer.
I think the best answer is something along:
- local symmetries of the Lagrangian imply conserved currents. gives conserved charges.
- OK now. We want a local symmetry. And we also want:Given all of that, the most obvious and direct thing we reach a guess at the quantum electrodynamics Lagrangian is Video "Deriving the qED Lagrangian by Dietterich Labs (2018)"
- Dirac equation: quantum relativistic Newton's laws that specify what forces do to the fields
- electromagnetism: specifies what causes forces based on currents. But not what it does to masses.
A basic non-precise intuition is that a good model of reality is that electrons do not "interact with one another directly via the electromagnetic field".
A better model happens to be the quantum field theory view that the electromagnetic field interacts with the photon field but not directly with itself, and then the photon field interacts with parts of the electromagnetic field further away.
The more precise statement is that the photon field is a gauge field of the electromagnetic force under local U(1) symmetry, which is described by a Lie group. TODO understand.
This idea was first applied in general relativity, where Einstein understood that the "force of gravity" can be understood just in terms of symmetry and curvature of space. This was later applied o quantum electrodynamics and the entire Standard Model.
From Video "Lorenzo Sadun on the "Yang-Mills and Mass Gap" Millennium problem":
- www.youtube.com/watch?v=pCQ9GIqpGBI&t=1663s mentions this idea first came about from Hermann Weyl.
- youtu.be/pCQ9GIqpGBI?t=2827 mentions that in that case the curvature is given by the electromagnetic tensor.
Bibliography:
- www.youtube.com/watch?v=qtf6U3FfDNQ Symmetry and Quantum Electrodynamics (The Standard Model Part 1) by ZAP Physics (2021)
- www.youtube.com/watch?v=OQF7kkWjVWM The Symmetry and Simplicity of the Laws of Nature and the Higgs Boson by Juan Maldacena (2012). Meh, also too basic.
More interestingly, how is that implied by the Stern-Gerlach experiment?
physics.stackexchange.com/questions/266359/when-we-say-electron-spin-is-1-2-what-exactly-does-it-mean-1-2-of-what/266371#266371 suggests that half could either mean:
- at limit of large
l
for the Schrödinger equation solution for the hydrogen atom the difference between each angular momentum is twice that of the eletron's spin. Not very satisfactory. - it comes directly out of the Dirac equation. This is satisfactory. :-)