Micro means "small wavelength compared to radio waves", not micron-sized.
Microwave production and detection is incredibly important in many modern applications:
- telecommunications, e.g. being used in
- Wi-Fi
- satellite communicationsyoutu.be/EYovBJR6l5U?list=PL-_93BVApb58SXL-BCv4rVHL-8GuC2WGb&t=27 from CuriousMarc comments on some piece of Apollo equipment they were restoring/reversing:Ah, Ciro Santilli really wishes he knew what that meant more precisely. Sounds so cool!
These are the boxes that brought you voice, data and live TV from the moon, and should be early masterpieces of microwave electronics, the blackest of black arts in analog electronics.
- 4G and other cellular network standards
- radar. As an example, 1965 Nobel Prize in Physics laureate Julian Schwinger did some notable work in the area in World War II, while most other physicists went to the Manhattan Project instead.This is well highlighted in QED and the men who made itby Silvan Schweber (1994). Designing the cavity wasn't easy. One of the key initial experiments of quantum electrodynamics, the Lamb-Retherford experiment from 1947, fundamental for modern physics, was a direct consequence of post-radar research by physicists who started to apply wartime developments to their scientific search.Wikipedia also mentions en.wikipedia.org/w/index.php?title=Microwave&oldid=1093188913#Radar_2:
The first modern silicon and germanium diodes were developed as microwave detectors in the 1930s, and the principles of semiconductor physics learned during their development led to semiconductor electronics after the war.
- microwave is the natural frequency of several important Atomic, Molecular and Optical Physics phenomena, and has been used extensively in quantum computing applications, including completely different types of quantum computer type:Likely part of the appeal of microwaves is that they are non-ionizing, so you don't destroy stuff. But at the same time, they are much more compatible with atomic scale energies than radio waves, which have way way too little energy.
- trapped ion quantum computer; Video "Trapping Ions for Quantum Computing by Diana Craik (2019)"
- superconducting quantum computer; e.g. this Junior Microwave Design Engineer job accouncement from Alice&Bob: archive.ph/wip/4wGPJ
This is notably what the United States emerged to be after World War II. But it was likely what Nazi Germany also was, and many other superpowers.
Ciro Santilli feels that much more relevant would be to also include academia as in "military-industrial-academic" complex, the Wikipedia page actually mentions precedents to this idea.
The addition of congress/politicians is also relevant.
But hey, the name wouldn't sound so slick with three parts.
It is basically in this context that American science and technology flourished after World War II, including notably the development of quantum electrodynamics, Richard Feynman being a prototypical example, having previously worked on the Manhattan Project.
Ciro Santilli would like to fully understand the statements and motivations of each the problems!
Easy to understand the motivation:
- Navier-Stokes existence and smoothness is basically the only problem that is really easy to understand the statement and motivation :-)
- p versus NP problem
Hard to understand the motivation!
- Riemann hypothesis: a bunch of results on prime numbers, and therefore possible applications to cryptographyOf course, everything of interest has already been proved conditionally on it, and the likely "true" result will in itself not have any immediate applications.As is often the case, the only usefulness would be possible new ideas from the proof technique, and people being more willing to prove stuff based on it without the risk of the hypothesis being false.
- Yang-Mills existence and mass gap: this one has to do with finding/proving the existence of a more decent formalization of quantum field theory that does not resort to tricks like perturbation theory and effective field theory with a random cutoff valueThis is important because the best theory of light and electrons (and therefore chemistry and material science) that we have today, quantum electrodynamics, is a quantum field theory.
Currently an informal name for the Standard Model
Chronological outline of the key theories:
- Maxwell's equations
- Schrödinger equation
- Date: 1926
- Numerical predictions:
- hydrogen spectral line, excluding finer structure such as 2p up and down split: en.wikipedia.org/wiki/Fine-structure_constant
- Dirac equation
- Date: 1928
- Numerical predictions:
- hydrogen spectral line including 2p split, but excluding even finer structure such as Lamb shift
- Qualitative predictions:
- Antimatter
- Spin as part of the equation
- quantum electrodynamics
- Date: 1947 onwards
- Numerical predictions:
- Qualitative predictions:
- Antimatter
- spin as part of the equation
One of the leading figures of the early development of quantum electrodynamics.
Initially light was though of as a wave because it experienced interference as shown by experiments such as:
But then, some key experiments also start suggesting that light is made up of discrete packets:and in the understanding of the 2020 Standard Model the photon is one of the elementary particles.
- Compton scattering, also suggests that photons carry momentum
- photoelectric effect
- single photon production and detection experiments
This duality is fully described mathematically by quantum electrodynamics, where the photon is modelled as a quantized excitation of the photon field.
Physics (like all well done science) is the art of predicting the future by modelling the world with mathematics.
And predicting the future is the first step towards controlling it, i.e.: engineering.
Ciro Santilli doesn't know physics. He writes about it partly to start playing with some scientific content for: OurBigBook.com, partly because this stuff is just amazingly beautiful.
Ciro's main intellectual physics fetishes are to learn quantum electrodynamics (understanding the point of Lie groups being a subpart of that) and condensed matter physics.
Every science is Physics in disguise, but the number of objects in the real world is so large that we can't solve the real equations in practice.
Luckily, due to emergence, we can use uglier higher level approximations of the world to solve many problems, with the complex limits of applicability of those approximations.
Therefore, such higher level approximations are highly specialized, and given different names such as:
As of 2019, all known physics can be described by two theories:
Unifying those two into the theory of everything one of the major goals of modern physics.
Ah, the jewel of computational physics.
Also known as an ab initio method: no experimental measurement is taken as input, QED is all you need.
But since QED is thought to fully describe all relevant aspects molecules, it could be called "the" ab initio method.
For one, if we were able to predict protein molecule interactions, our understanding of molecular biology technologies would be solved.
No more ultra expensive and complicated X-ray crystallography or cryogenic electron microscopy.
And the fact that quantum computers are one of the most promising advances to this field, is also very very exciting: Section "Quantum algorithm".
Theoretical framework on which quantum field theories are based, theories based on framework include:so basically the entire Standard Model
The basic idea is that there is a field for each particle particle type.
E.g. in QED, one for the electron and one for the photon: physics.stackexchange.com/questions/166709/are-electron-fields-and-photon-fields-part-of-the-same-field-in-qed.
And then those fields interact with some Lagrangian.
One way to look at QFT is to split it into two parts:Then interwined with those two is the part "OK, how to solve the equations, if they are solvable at all", which is an open problem: Yang-Mills existence and mass gap.
- deriving the Lagrangians of the Standard Model: why do symmetries such as SU(3), SU(2) and U(1) matter in particle physics?s. This is the easier part, since the lagrangians themselves can be understood with not very advanced mathematics, and derived beautifully from symmetry constraints
- the qantization of fields. This is the hard part Ciro Santilli is unable to understand, TODO mathematical formulation of quantum field theory.
There appear to be two main equivalent formulations of quantum field theory:
Quantum mechanics is quite a broad term. Perhaps it is best to start approaching it from the division into:
- non-relativistic quantum mechanics: obviously the simpler one, and where you should start
- relativistic quantum mechanics: more advanced, and arguably "less useful"
Key experiments that could not work without quantum mechanics: Section "Quantum mechanics experiment".
Mathematics: there are a few models of increasing precision which could all be called "quantum mechanics":
Ciro Santilli feels that the largest technological revolutions since the 1950's have been quantum related, and will continue to be for a while, from deeper understanding of chemistry and materials to quantum computing, understanding and controlling quantum systems is where the most interesting frontier of technology lies.
The first really good quantum mechanics theory made compatible with special relativity was the Dirac equation.
And then came quantum electrodynamics to improve it: Dirac equation vs quantum electrodynamics.
TODO: does it use full blown QED, or just something intermediate?
www.youtube.com/watch?v=NtnsHtYYKf0 "Mercury and Relativity - Periodic Table of Videos" by Periodic Videos (2013). Doesn't give the key juicy details/intuition. Also mentioned on Wikipedia: en.wikipedia.org/wiki/Relativistic_quantum_chemistry#Mercury
Some of Feynman's key characteristics are:
- obsession with understanding the experiments well, see also Section "How to teach and learn physics"
- when doing more mathematical stuff, analogous obsession about starting with a concrete example and then generalizing that into the theory
- liked to teach others. At Surely You're Joking, Mr. Feynman for example he mentions that one key problem of the Institute for Advanced Study is that they didn't have to teach, and besides that making you feel useless when were not having new ideas, it is also the case that student's questions often inspire you to look again in some direction which sometimes happens to be profitableHe hated however mentoring others one to one, because almost everyone was too stupid for him
- interest in other natural sciences, and also random art and culture (and especially if it involves pretty women)
Some non-Physics related ones, mostly highlighted at Genius: Richard Feynman and Modern Physics by James Gleick (1994):
- Feynman was a huge womanizer during a certain period of his life
- he hated pomp, going as far as seeming uneducated to some people in the way he spoke, or going out of his way to look like that. This is in stark contrast to "rivals" Murray Gell-Mann and Julian Schwinger, who were posh/snobby.
Even Apple thinks so according to their Think different campaign: www.feynman.com/fun/think-different/
quantum electrodynamics lectures:
Feynman was apparently seriously interested/amused by computer:
- Video "Los Alamos From Below by Richard Feynman (1975)" see description for the human emulator
- quantum computers as experiments that are hard to predict outcomes was first attributed to Feynman
- www.youtube.com/watch?v=EKWGGDXe5MA Richard Feynman Computer Heuristics Lecture (1986)
Two official websites?
- www.richardfeynman.com/ this one has clearly superior scientific information.
- www.feynman.com/
High level timeline of his life:
In 1948 he published his reworking of classical quantum mechanics in terms of the path integral formulation: journals.aps.org/rmp/abstract/10.1103/RevModPhys.20.367 Space Time Approach to nonrelativistic quantum mechanics (paywalled 2021)
Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979) Updated 2024-12-15 +Created 1970-01-01
Talk title shown on intro: "Today's Answers to Newton's Queries about Light".
6 hour lecture, where he tries to explain it to an audience that does not know any modern physics. This is a noble effort.
Part of The Douglas Robb Memorial Lectures lecture series.
Feynman apparently also made a book adaptation: QED: The Strange Theory of Light and Matter. That book is basically word by word the same as the presentation, including the diagrams.
According to www.feynman.com/science/qed-lectures-in-new-zealand/ the official upload is at www.vega.org.uk/video/subseries/8 and Vega does show up as a watermark on the video (though it is too pixilated to guess without knowing it), a project that has been discontinued and has has a non-permissive license. Newbs.
4 parts:This talk has the merit of being very experiment oriented on part 2, big kudos: how to teach and learn physics
- Part 1: is saying "photons exist"
- Part 2: is amazing, and describes how photons move as a sum of all possible paths, not sure if it is relativistic at all though, and suggests that something is minimized in that calculation (the action)
- Part 3: is where he hopelessly tries to explain the crucial part of how electrons join the picture in a similar manner to how photons do.He does make the link to light, saying that there is a function which gives the amplitude for a photon going from A to B, where A and B are spacetime events.And then he mentions that there is a similar function for an electron to go from A to B, but says that that function is too complicated, and gives no intuition unlike the photon one.He does not mention it, but P and E are the so called propagators.This is likely the path integral formulation of QED.On Quantum Mechanical View of Reality by Richard Feynman (1983) he mentions that is a Bessel function, without giving further detail.And also mentions that:where
m
is basically a scale factor.
such that both are very similar. And that something similar holds for many other particles.And then, when you draw a Feynman diagram, e.g. electron emits photon and both are detected at given positions, you sum over all the possibilities, each amplitude is given by:summed over all possible Spacetime points.This is basically well said at: youtu.be/rZvgGekvHes?t=3349 from Quantum Mechanical View of Reality by Richard Feynman (1983).TODO: how do electron velocities affect where they are likely to end up? suggests the probability only depends on the spacetime points.Also, this clarifies why computations in QED are so insane: you have to sum over every possible point in space!!! TODO but then how do we calculate anything at all in practice? - Part 4: known problems with QED and thoughts on QCD. Boring.
TODO. Can't find it easily. Anyone?
This is closely linked to the Pauli exclusion principle.
What does a particle even mean, right? Especially in quantum field theory, where two electrons are just vibrations of a single electron field.
Another issue is that if we consider magnetism, things only make sense if we add special relativity, since Maxwell's equations require special relativity, so a non approximate solution for this will necessarily require full quantum electrodynamics.
As mentioned at lecture 1 youtube.com/watch?video=H3AFzbrqH68&t=555, relativistic quantum mechanical theories like the Dirac equation and Klein-Gordon equation make no sense for a "single particle": they must imply that particles can pop in out of existence.
Bibliography:
- www.youtube.com/watch?v=Og13-bSF9kA&list=PLDfPUNusx1Eo60qx3Od2KLUL4b7VDPo9F "Advanced quantum theory" by Tobias J. Osborne says that the course will essentially cover multi-particle quantum mechanics!
- physics.stackexchange.com/questions/54854/equivalence-between-qft-and-many-particle-qm "Equivalence between QFT and many-particle QM"
- Course: Quantum Many-Body Physics in Condensed Matter by Luis Gregorio Dias (2020) from course: Quantum Many-Body Physics in Condensed Matter by Luis Gregorio Dias (2020) give a good introduction to non-interacting particles
Space-Time Approach to Quantum Electrodynamic by Richard Feynman (1949) Updated 2024-12-15 +Created 1970-01-01
The first key paper to his approach to quantum electrodynamics apparently.
Published on Physical Review 76.769.
A single line in the emission spectrum.
So precise, so discrete, which makes no sense in classical mechanics!
Has been the leading motivation of the development of quantum mechanics, all the way from the:
- Schrödinger equation: major lines predicted, including Zeeman effect, but not finer line splits like fine structure
- Dirac equation: explains fine structure 2p spin split due to electron spin/orbit interactions, but not Lamb shift
- quantum electrodynamics: explains Lamb shift
- hyperfine structure: due to electron/nucleus spin interactions, offers a window into nuclear spin
So that he can work full time on OurBigBook.com and revolutionize advanced university-level science, technology, engineering, and mathematics eduction for all ages.
Donating to Ciro is the most effective donation per dollar that you can make to:
- improve hardcore university-level STEM education for all ages
- help make every child into the next Nobel Prize/Fields Medal/deep tech unicorn co-founder
Ciro's goal in life is to help kids as young as possible to reach, and the push, the frontiers of natural sciences human knowledge, linking it to applications that might be the the next big thing as early as possible. Because nothing is more motivating to students than that feeling of:rather than repeating the same crap that everyone is already learning.
Hey, I can actually do something in this area that has never been done before!
To do this, Ciro wants to work in parallel both on:
- the multi-user website e-learning platform of OurBigBook.com
- creating amazing teaching content that motivates that platform, and that deeply interests Ciro, notably quantum mechanics and its related applications:
- quantum computing
- molecular biology
- condensed matter physics and chemistry
- slightly more theoretical stuff in somewhat related fields of:
- continue to dump his brain/research in areas Ciro has expertise in: software engineering and open source software
Ciro believes that this rare combination of both:produces a virtuous circle, because Ciro:
- proven passion and capability to learn and teach science, technology, engineering, and mathematics subjects
- proven programming skills, including web development
- wants to learn and teach, so he starts to create content
- then he notices the teaching tools are crap
- and since he has the ability to actually improve them, he does
As explained at OurBigBook.com and high flying bird scientist, Ciro is most excited to make contributions at the "missing middle level of specialization" that lies around later undergrad and lower grad education:But on that middle sweet spot, Ciro believes that something can be done, in such as way that delivers:in a way that is:
- at lower undergrad level, there is already a lot of free material out there to learn stuff
- at upper graduate level and beyond, too few people know about each specific subject, that it becomes hard to factor things out
- beauty
- power
- in your face, without requiring you to study for a year
- but also giving enough precision to allow you to truly appreciate the beauty of the subjectCiro's programming skills can also be used to create educational, or actually more production-like, simulations and illustrations.
Ciro believes that today's society just keep saying over and over: "STEM is good", "STEM is good", "STEM is good" as a religious mantra, but fails miserably at providing free learning material and interaction opportunities for people to actually learn it at a deep enough level to truly appreciate why "STEM is good". This is what he wants to fix.
The following quote is ripped from Gwern Branwen's Patreon page, and it perfectly synthesizes how Ciro feels as well:
Omar Khayyam also came to the Vizier... but not to ask for title or office. 'The greatest boon you can confer on me,' he said, 'is to let me live in a corner under the shadow of your fortune, to spread wide the advantages of Science, and pray for your long life and prosperity.'
In addition to all of this, financial support also helps Ciro continue his general community support activities:
- writing and updating his amazing Stack Overflow answers: Section "Ciro Santilli's Stack Overflow contributions"
- saving the world from the CCP: Section "Ciro Santilli's campaign for freedom of speech in China"
As of 2019, the more formal name for particle physics, which is notably missing general relativity to achieve the theory of everything.
cds.cern.ch/record/799984/files/0401010.pdf The Making of the Standard Model by Steven Weinberg mentions three crucial elements that made up the standard model post earlier less generalized quantum electrodynamics understandings
One of Ciro Santilli's strongest feeling in education is that material often falls in either of the two categories:
- hundreds of too basic popular science, e.g.:
- a 5 minute popular science video trying to explain quantum electrodynamics (an advanced subject) for someone who doesn't know what a Riemann integral is (a basic subject)
- a few full university courses that takes 20 hours to deliver the first punchline of the course
Ciro believes that there is often an important missing link between them, e.g.:
- a 15 minute video that delivers the main end results and motivations for people who already know the very basic stuff
If we as a society are unable to provide this sweet Middle Way sweet-spot, it is unreasonable to expect that learners will ever have the motivation to advance, because it is just too boring! They are just more likely to go play video games instead.
It is Ciro's hope that OurBigBook.com will help to fill exactly that gap.
In Ciro's view, as of the 2020's this critical gap generally lies somewhere between the end of undergraduate studies, and at the start of postgraduate studies.
What we have to do is make this knowledge more accessible all way down to high school and earlier.
Let's take the gloves off more often, and give the full thing to interested students! Let students learn what they want to learn, and do that as soon as possible! Life is too short!
This problem is basically the knowledge version of the last mile problem. When we reach the end of graduate, there are enough directions of knowledge to go off into, that the probability that a great free tutorial exists is relatively low. Of course, as one approaches the realm of novel research, the branching is so wide that having perfect tutorials becomes impossible. Ciro's goal in life go push the last mile marker a bit further out.
Related:
- universityphysicstutorials.com/ by Adam Beatty mentions:
There are myriad resources for physics and maths. The Kahn Academy and Patrick JMT were the best for me. They really helped me out. The question is, what resources are there for the advanced undergraduate courses?
Bibliography:
There is value in tutorials written by early pioneers of the field Updated 2024-12-15 +Created 1970-01-01
Everyone is beginner when the field is new, and there is value in tutorials written by beginners.
For example, Ciro Santilli felt it shocking how direct and satisfying Richard Feynman's scientific vulgarization of quantum electrodynamics were, e.g. at: Richard Feynman Quantum Electrodynamics Lecture at University of Auckland (1979), and that if he had just assumed minimal knowledge of mathematics, he was about to give a full satisfactory picture in just a few hours.
Other supporters of this:
- Ron Maimon: the same also applies to early original papers of the field, not just tutorials
- Dean Kamen: quick mention at: fi.edu/en/awards/laureates/dean-kamen, but a better longer mention on Dreamer (2020), nearby section from trailer: youtu.be/Cj2VKVJKf1I?t=16